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ABSTRACT 

The present research work was carried out in surface soils (0- 15 cm) of North Saurashtra Agro-Climatic zone 

at Junagadh Agricultural University, Junagadh, Gujarat, India in the year 2021-2023. The soils were 

extending between 210 0’0” to 230 30’0” North latitude and 690 30’0” to 720 30’0” East longitude. The soils 

ranged from Shallow medium black to medium black calcareous, whereas soils developed by basalt, rocks 

and sandstone deposit. Total of 480 soil samples was collected using the GPS location of North Saurashtra 

Agro-Climatic Zone and then after potassium fractions were evaluated. This involved status of water soluble 

K, available K, exchangeable K, 1 N nitric acid soluble K, total K and reserve K as well as inter-correlation 

between K fractions, simple correlation and regression models of available K and map prepared by Arc GIS 

software with six tire data feeding denoted with six different color concentration. The status of exchangeable 

K (13.6-319.8 mg kg-1), 1 N HNO3 soluble K (86.0 to 1024.0 mg kg-1), water soluble K (2.2 to 70.2 mg kg-

1), total K (0.15-1.89 %) and available K (18.0 to 400.0 mg kg-1) were recorded in soils of North Saurashtra 

Agro-Climatic Zone. The following was the order of abundance of soil fractions in the soils: Total K >1 

Normal (nitric acid soluble) HNO3-K > reserve K > available K > Ex-K > water-soluble K. About 6.45 

percent of samples were tested as low class (< 55 mg kg-1), 53.75 per cent of samples were under medium 

class (55-125 mg kg-1) and 39.40 per cent of samples falls in high available potassium class (> 125 mg kg-1). 

Furthermore, it referred to a high nutrient index rate (NI≥2.33). 

INTRODUCTION 
 
 
Potassium is the most abundant essential nutrient 

element required by all types of organisms, including 

plants and animals for growth, building up biomass 

and development (Lalitha and Dhakshinamoorthy, 

2014: Garav et al, 2019). It is a naturally occurring 

alkaline metal found in the forms of salt, various 

rocks, amorphous and clay minerals in soils. 

(Strivastava, 2007; Gangopadhyay et al. 2005). 

Mistake and enhance transfer learning performances 

strategies.   The   inconsistent   performance   of 

deep learning models in the categorization of 

mammography was described by Wang et al. in 2020. 

Six deep learning architectures were evaluated using 

a total of four datasets from various patient groups. 

The results demonstrated that, independent of the 

model architecture, training strategy, or data labelling 

approach, the excellent performance attained in the 

training dataset could not be applied to unknown 

external datasets. Recently, [2] used a contrastive 

learning approach to study the DG in lesion detection 
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on different vendors and extract domain invariant 

characteristics. The technique demonstrated 

excellent generalizability when tested on two unseen 

suppliers using mammograms from three different 

vendors for training. No statistical significance tests 

were performed to confirm the improvement; they 

merely used the mean average precision (mAP) as an 

assessment metric for the comparison with cutting- 

edge generalisation approaches. In the context of 

cross-institutional domain shift in other medical 

imaging fields, such as chest X-ray, prior research has 

found variable generalisation performance of deep 

learning models [3]. Chest X-ray prediction models’ 

generalisation abilities were examined by Cohen et al. 

[4] using training and testing datasets from various 

universities. 

 
It was found that the domain shift in the pictures had a 

far less impact on the generalisation error than the shift 

in the labels. This paper also discusses the distinctions 

between the covariate shift, which is present in the 

data of each domain, and the domain shift, which is 

induced by the varied image acquisition procedures. 

The effectiveness of eight domain generalisation 

strategies was recently benchmarked by Zhang et al. 

[5] using chest X-ray pictures and multi-site clinical 

time series datasets. On the data from the chest X-ray 

imaging, none of the DG approaches managed to 

significantly improve OOD performance. They did 

not apply intensity scale standardisation or any of the 

other single-source domain generalisation strategies 

that we used in this investigation, which is in contrast 

to our work. Additionally, a single classification 

architecture called DenseNet-121 was trained on a 

very small sample size of pictures. The largest study 

to date on the effects of domain shift in deep learning 

models trained using MR images, [27] assessed the 

reliability of a deep learning model in clinical ODD 

data for magnetic resonance imaging (MRI). 

 
The results showed that performance in OOD data 

was improved by training with more heterogeneous 

data from a greater variety of scanners and methods. 

In contrast to this, the focus of our work is on how to 

strengthen models when data from other institutions, 

or domains, is not readily available. Additionally 

in MRI, [6] proposal for a causality-inspired data 

augmentation methodology for single-source domain 

generalisation for medical image segmentation was 

compared to various SSDG approaches, with their 

method outperforming them all. BigAug achieves 

performance that is similar to the two state-of-the- 

art algorithms in four distinct, hitherto unexplored 

regions. Finally, Thagaard et al. [7] and Stacke et al. 

[8] have explored the domain shift effect for deep 

learning in digital pathology and histopathology. 

Deep learning has been widely addressed in the 

literature for the identification and categorization 

of masses in mammograms [9]. A wide variety of 

deep learning models have been developed to help 

radiologists in mammography screening. The bulk of 

techniques in the literature report their performance 

in the training domain, though transfer learning 

is later used to adapt the model to new domains. 

Instead, we would like to evaluate the performance 

of models in unexplored fields without the aid of 

transfer learning and determine the degree to which 

models developed in a single-source environment 

can be generalised. We also compare the top single- 

source DG model with transfer learning in five 

distinct domains. The majority of approaches in the 

literature only discuss how well they perform in the 

training domain; transfer learning is applied later 

to adapt the model to other domains. Instead, we 

would like to investigate how well models trained in 

a single-source context performed both without and 

with DG methods, as well as how well those models 

might generalise without the aid of transfer learning. 

Additionally, we contrast the best single-source DG 

model with transfer learning across five different 

domains. 

 
Furthermore, current proposals in the literature use 

just one well-known Convolutional Neural Networks 

(CNN) architecture, such as Faster R-CNN ([10] or 

[11], whereas the more recent Transformers-based 

detection models [12] are still not extensively studied 

We also incorporate these cutting-edge Transformer- 

based detection models in our study and compare 

their generalizability to those of conventional 

CNN detection techniques. Transformer based 

Architectures’ Robustness Transformer designs’ 

OOD robustness has been because Transformers got 

analysed in recent articles [13] more often used in 

Computer Vision tasks [14], mostly because Visual 

Transformers (ViT) were released. 

 
The majority of these studies discover that self- 

awareness approaches, in particular, and the lack 

of convolutions have strong inductive biases and 

outperform CNNs in terms of OOD resilience due 

to the inherent properties of Transformers. As an 

illustration, Zhang et al. (2021a) discovered that the 

Transformer-based model, a DeiT [15], performed 

better than a single variant of the well-known Big 

Transfer (BiT) CNN-based model. They accomplished 
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this utilising the most well-liked ImageNet data-shift 

datasets [16]. Transformers are not more durable than 

CNN models, but rather better calibrated, according 

to a more extensive analysis that considered the most 

relevant BiT and ViT variations. 

 
Transformers’ improved robustness is mostly related 

to the architectural components of their design, 

such as their self-attention mechanism and lack of 

inductive biases. They proved that the influence of 

pre-training is more important than the absence 

of self-attention by outperforming Transformers 

with a CNN pre-trained robot. In conclusion, little 

is known about why self-attention mechanisms 

create better representations in specific settings and 

how different pre-training methods dramatically 

influence the downstream task.   In   this   study, 

we compare the robustness of CNN-based and 

Transformer-based object detection architectures 

that were trained on large datasets and specifically 

designed for mass identification in a medium-sized 

digital mammography dataset (2,864 mammograms 

included in the training). Transfer learning has been 

used in mammography breast cancer diagnosis 

to adapt the model to new domains, such as new 

scanners and imaging techniques [17]. The two main 

constraints on transfer learning in medical imaging 

are data accessibility and catastrophic forgetting. 

When a model is trained sequentially on numerous 

tasks, a feature of artificial neural networks known as 

catastrophic forgetting occurs, causing the model to 

abruptly forget previously learned knowledge upon 

learning new information. 

 
Datasets For Full-Field Digital Mammography 

 
There are several open access X-ray mammography 

archives listed in the literature [18]. The three FFDM 

datasets employed in this study to assess the robustness 

and generalisation of the selected approaches on 

various domains are the OPTIMAM dataset, a subset 

of the OMI-DB [19], the INbreast [20], and the Breast 

Cancer Digital Repository (BCDR) [21]. A subset 

of OPTIMAM containing 3,500 malignant and 500 

benign patients was used in this investigation. Each 

instance of the dataset may contain various studies 

from the same subject. The training, validation, 

and test sets were carefully divided into situations 

rather than studies. The two most common views of 

each breast, the medio-lateral oblique (MLO) and 

cranio-caudal (CC) views, were used as independent 

inputs. The mammography picture matrix is either 

3328 x 4084 or 2560 x 3328 pixels, depending on 

the manufacturer and compression plate used in the 

acquisition. OPTIMAM meets the requirements for 

a multi-center and multi-scanner research because 

it includes screenings from a total of three separate 

centres and different scanner manufacturers. Only 

examples from the various scanner manufacturers 

that had masses with annotations were selected. The 

four unique domains generated using OPTIMAM 

to divide the cases by scanner vendor were Hologic 

Inc., Siemens, GE, and Philips. About Dataset Breast 

mammograms were collected using a Siemens 

Mammo-Novation FFDM equipment from a single 

Portuguese institution. Images supplied in DICOM 

format have a matrix of 3328 x 4084 or 2560 x 3328 

pixels, depending on the compression plate that was 

used during the acquisition. This searchable database 

contains 115 cases in total, including masses, 

calcifications, asymmetries, and deformities. Only 50 

of the 115 examples, which include 116 annotations 

altogether, have masses. The majority of in breast 

lesions lack biopsy evidence; hence the malignancy 

of the tumour is determined using the BI-RADS 

evaluation categories [22]. Masses with BI-RADS 

2 and 3 are typically classified as benign, but those 

with BI-RADS 2 are classified as malignant. A freely 

available dataset from 2012, the Digital Breast Cancer 

Repository (BCDR) Dataset from the BCDR [23], is 

still easily accessible right now. as needed. The data 

package contains both digital (BCDRDM) and film 

mammograms (BCDR-FM). 90 patients total have 

biopsy-proven mass labelled lesions in the BCDR- 

dataset. DM’s every image is provided by the Centro 

Hospitalar So Joo (FMUP-HSJ) of the University 

of Porto’s Faculty of Medicine and was taken using 

a Mammo-Novation Siemens FFDM scanner. The 

picture matrix is either 3328 4084 or 2560. is only 

available in 8-bit depth TIFF format and depends on 

the compression plate used in the. BCDR will be used 

as a single domain for the purposes of this inquiry. 

 
Change In Mammography’s Domain 

 
It is well recognized that one of the main causes of 

domain shift is the employment of various scanner 

manufacturers and image capture techniques. The 

differences between domains that are most noticeable 

are the variations in intensity values and the contrast 

between the adipose areas of the breast and the fibro 

glandular tissues. The different data distributions 

among datasets result in extra covariate shift for 

medical imaging datasets on top of the acquisition 

shift. Due to the lack of available data and privacy 

restrictions, covariate shift is difficult to avoid. 
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Anywhere on the breast might develop masses or 

nodules, having various sizes and forms that might 

either seem benign or cancerous. Additionally, 

additional elements like breast density might make 

things more challenging. Large-scale detection 

Breasts with high densities exhibit a greater likelihood 

of occlusion of the thick tissues (parenchyma) masses 

and other breast tumours, or even fake them. Because 

of this, mammography’s total sensitivity for detecting 

breast cancer In thick breasts, the chance of detection 

is lowered by more than 20% [24,25], even though 

thick breasted women had a 4-6 breast cancer risk 

by a factor of two in comparison to people with low 

breast density [26]. 

 

CONCLUSION 

 
Studied a number of mammography mass detection 

methods in six different regions. Our experimental 

results showed that transformer-based detection 

models were more robust to domain changes. 

Additionally, we emphasised the value of using 

SSDG strategies to lessen domain shift and enhance 

performance in hypothetical clinical settings. In 

four of the five domains not visible during training, 

the suggested training pipeline reduced the domain 

shift that was evident. The findings showed that in 

one domain, the domain shift brought about by the 

acquisition pipeline was outweighed by the dataset 

change brought about by a larger percentage of tiny 

masses. In addition, we discovered that Transfer 

Learning improved performance in one domain 

but degraded performance in other areas. Transfer 

learning is an effective method for reducing dataset 

shift, but as the findings demonstrate, it is not 

always effective and must be used with caution to 

prevent catastrophic forgetting. We further believe 

that continuous learning for AI in breast cancer 

diagnosis should be the focus of future research. Both 

in a federated and a distributed setting, continuous 

learning has a great deal of promise to help CADe 

systems avoid problems like catastrophic forgetting, 

current dataset changes, and demographic biases. 
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